Formal groups and stable homotopy of commutative rings
نویسندگان
چکیده
منابع مشابه
The stack of formal groups in stable homotopy theory
We construct the algebraic stack of formal groups and use it to provide a new perspective onto a recent result of M. Hovey and N. Strickland on comodule categories for Landweber exact algebras. This leads to a geometric understanding of their results as well as to a generalisation.
متن کاملA new family in the stable homotopy groups of spheres
Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...
متن کاملCommutative Schur rings over symmetric groups II :
We determine the commutative Schur rings over S6 that contain the sum of all the transpositions in S6. There are eight such types (up to conjugacy), of which four have the set of all the transpositions as a principal set of the Schur ring. 2010 MSC: 20C05, 20F55
متن کاملFormal Groups over Discrete Rings
In this note we develop a theory of formal schemes and groups over arbitrary commutative rings which coincides with that of [5] if the base ring is a field, and generalizes that of [2]. We assume always our base ring is discrete and treat a formal scheme (resp. group) G, with two principal tools: A topology on the affine algebra (9(G) allows us to form its continuous linear dual B(G), the coalg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2004
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2004.8.335